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Abstract. In this paper, we present a fast and unified framework for
simultaneous face detection and 3D pose (pitch, yaw, roll) estimation
of unconstrained faces using deep convolutional neural networks (CNN).
Face detection is implemented with region-based framework as previous
work like Faster RCNN. We model the pose estimation as a classifi-
cation and regression problem: first divide continuous head poses into
several discrete clusters, then adjust poses within each class with a class-
specific regressor to achieve more accurate results. All classification and
regressions for the two tasks are trained and tested simultaneously in
one unified network. Our approach runs at 10 fps, which is the fastest
implementation among the recently proposed methods as far as we know.
Moreover, it is able to predict pose without using any 3D information.
Extensive evaluations on several challenging benchmarks such as AFLW
and AFW demonstrate the effectiveness of the proposed method with
competitive results.

Keywords: Face detection · Head pose estimation ·
Convolutional neural networks

1 Introduction

For the past decades, cameras and smartphones have spread widely and count-
less photos are captured to record people’s daily life. Making full use of these
photos helps improve user experience, for example, users can look for photos
taken with a particular friend [5]. Other Human Computer Interaction (HCI)
devices like smart home requires devices to understand the expression of a per-
son. And all the performances of other various face based applications, from face
identification and verification to face clustering, tagging and retrieval, rely on
accurate and efficient face detection. On the other hand, as another challeng-
ing task correlated with face analysis, head pose estimation has been found
to be useful in human-robot interaction [14], driver attention detection [3] and
social behavior analysis [24].
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Fig. 1. Illustration of head pose estimation problem. (a) The pose of the head is
described in the form of three rotation angles: pitch, yaw and roll [18]. (b) An example
of predicted head pose.

These two tasks, face detection and head pose estimation, have tradition-
ally been approached as independent problems, yet some methods solve them
at the same time as separate components. As having common shared visual
appearance of face regions, however, it will be more effective to solve them in
a unified framework. And, pose angles could play as the latent variables and
have immediate impact on visual appearance of face. It makes these two tasks
closely correlated to each other and will be beneficial to model them in a unified
framework. Recently, methods are proposed to solve the two tasks in a unified
model [25,36,37]. However, these methods utilize facial landmarks to boost per-
formance either explicitly or implicitly. In addition, multiple stages for training
or testing makes their system not pure end-to-end, which discounts the final
performance in the cost of time and accuracy.

In this paper, benefiting from deep Convolutional Neural Networks (CNN)
architecture, our framework is designed to be more compact and efficient and
completely end-to-end (see Fig. 2), that is, input an image, detect face and esti-
mate head pose with only one network, without using face landmark information.
In recent years, deep CNN have achieved significant performance improvement
on benchmarks [5,23,26,34] for face detection. Furthermore, as a general deep
CNN architecture for object detection, Ren et al. proposed an efficient region-
based network Faster RCNN [27], showing outstanding performance in object
detection. We adopt this architecture as our basic face detection network, then
embed pose estimation module into this network, forming an end-to-end frame-
work for both tasks. Specifically, we propose a novel implicit coarse-to-fine search
scheme for pose estimation, which is embedded into the deep CNN architecture
following multi-task learning pipeline.

For 3D head pose estimation, we expect the system to infer the orientation
of person’s head relative to camera coordinate, described by the rotation angles:
pitch, yaw and roll, as shown in Fig. 1. Essentially, head pose estimation can
be formulated as a regression problem, however, these three angles have to be
recovered from monocular image to find the location of a pose in 3D pose space,
precisely. Learning such a mapping function is challenging, as it is expected to be
very sensitive to subtle change of face appearance, meanwhile, robust enough to
noise interference. Besides, directly searching in the original space requires highly
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descriptive features and will be inefficient considering computational complexity.
Hence we adopt a coarse-to-fine scheme, that is, we model head pose estimation
as a process of discrete classification followed by fine-grained continuous regres-
sion. By firstly inferring the coarse pose through classification, a rough range
of pose angles corresponding to a type of face appearance (e.g. frontal face) is
determined. Then the pose is tuned again by a regressor with respect to this class
to obtain a fine estimation. In so doing, we achieve state-of-the-art performance
on challenging datasets with high computational efficiency.

To sum up, in this paper, we propose a fast and unified framework for accu-
rate face detection and head pose estimation, and the main contributions can
be recapped as follows.

– An effective unified framework is designed as an end-to-end network for both
tasks: the input is an image containing faces, while the outputs are bounding
boxes of faces and three orientation angles of each face, i.e., the head pose.
The proposed method can run at 10 fps, which is fast enough for many real
time applications.

– A novel pose-class-specific coarse-to-fine scheme is proposed to be embedded
properly into the deep CNN network, for simultaneous pose estimation and
face detection.

– New state-of-the-art performance is achieved on challenging unconstrained
datasets such as AFLW and AFW.

2 Related Work

2.1 Face Detection

As a basic problem for face analysis, face detection has been studied for a long
time. In numerous work, there exists two major categories, namely, rigid-templates
based algorithm and Deformable Parts Model (DPM) based ones [35]. The early
representative of the first category include the Viola-Jones face detection algo-
rithm and its variations. DPM based model exploit abundant information on face,
such as a potential deformation between facial parts, which enables them to com-
bine face detection with facial part localization. Recent CNN based algorithms
have shown exceptional results on general object detection, such architecture also
have been investigated for face detection [5,23,26,34], in both categories.

In [26], DP2MFD based on Deformable Part Models [6] and deep pyramid
features are proposed, reducing gap of DPM in training and testing on deep
features. In [5], a single model is trained to fully capture faces in all orientations
without pose or landmark annotation and shows good performance on popular
benchmark datasets. In [34], facial parts responses by their spatial structure and
arrangement are exploited. This method is very good at detecting faces under
severe occlusion and variant poses.

In this work, we adopt the deep CNN framework for general object detection
[27] as the basic architecture of face detection. Then we further extend it to an
end-to-end system for simultaneous face detection and head pose estimation.
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Fig. 2. The architecture of the proposed network. This network consists of four mod-
ules: feature extraction module (from conv1 layer to average pooling layer), RPN mod-
ule (yellow dotted line), face detection module (purple dotted line, which is darker for
white-black print), face pose estimation module (red dotted line). Best viewed in color.
(Color figure online)

2.2 Head Pose Estimation

Head pose estimation aims at inferring the orientation of person’s head relative
to camera coordinate, which is very useful to many real life applications such as
HCI and surveillance.

Several categories that describe the fundamental approaches underling its
implementation have been used to estimate head pose [21]. We just briefly review
some typical methods here. Appearance template methods [29] make comparison
between a new head image with existing images labeled with discrete pose and
find the most likely view. Detector array methods [13] train multiple detectors
and assign a discrete pose to the detector with the greatest support. Nonlinear
regression methods [22] use nonlinear regression tools to develop a functional
mapping from the image or feature data to a head pose measurement. Manifold
embedding methods [7] seek low-dimensional manifolds that model the continu-
ous variation in head pose. New images can be embedded into these manifolds
and then used for embedded template matching or regression. Recently, CNN-
based model for head pose estimation had been developed, for example, in [20],
deep CNN network is used to capture head pose in low-resolution RGB-D data.

Even more, it has been shown that learning correlated tasks simultaneously
can boost the performance of individual tasks under the context of face detection
and head pose estimation [2,25,36,37]. The first work jointly addresses these two
tasks is [36]. This method models each facial mark as a part then construct a mix-
ture of trees to capture topological changes, much like DPM based model. Later
on, this work was extended to [37]. Then Ranjan et al. proposed a multi-task
learning framework, HyperFace [25], for face detection, landmark localization,
pose estimation and gender recognition. Nevertheless, this work is not exactly
end-to-end, since it requires a preprocess step such as Selective Search [31] to
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generate region of interests (RoIs). Counting all steps together it costs 3s per
image in total. The most recent work KEPLER [16] is much faster and trained
jointly, however, it is an iterative method requiring 5-stage training procedure
to achieve adequate performance, which is very time consuming.

As all tasks work under deep CNN architectures, when compares to [16,25],
our network is purely end-to-end for both training and testing. Furthermore, as
we adopt a novel pose-class-specific coarse-to-fine scheme, our method is com-
putational efficient while maintaining high accuracy for both face detection and
pose estimation.

3 Proposed Framework

The architecture of the proposed network is shown in Fig. 2. We devise the frame-
work based on Faster RCNN [27], which is a region-based framework in general
object detection. To further speed up and reduce computation cost, Region Pro-
posal Network (RPN) is proposed to compute proposals that share convolutional
layers with object detection networks. Following [27], we train both classifier and
bounding box regressor with multi-task loss, which is convenient and has been
demonstrated to facilitate object detection performance. In our method, pose-
class-specific face detection and pose estimation is integrated naturally into this
framework. A two-stage classification and bounding box regression solves face
detection, where the first stage is to discriminate pose class defined by clustered
angles and the second stage is to classify whether it is a face or not. As for pose
estimation, the classification in the first stage helps predict rotation angles more
accurately. In this section, we provide brief overview of the system and then
describe each component in detail.

3.1 Network Architecture

Our network is constructed based on ResNet-50 [11]. Figure 2 presents the archi-
tecture of the whole framework. This framework consists of four major modules:
feature extraction module, region proposal network (RPN) module, face detec-
tion module, and face pose estimation module. The first module is the back-
bone from input image to average pooling layer, and the rest three modules are
denoted within dotted lines.

RPN Module. In the scenario of multi-category object detection, the RPN
in Faster R-CNN [27] was developed as a class-agnostic detector. For single-
category (face) detection, RPN is naturally a detector for the only category
concerned. We specially tailor the RPN for face detection, as introduced in the
following. We adopt the ResNet-50 pre-trained on the ImageNet dataset [15]
as the backbone network rather than VGG-16 net [30]. The RPN is built on
top of the res4f layer, followed by an intermediate 3 × 3 convolutional layer
with 256 channels and two sibling 1 × 1 convolutional layers for classification
and bounding box regression (more details can be found in [27]). To deal with
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different scales and aspect ratios of objects, anchors were introduced in the RPN.
An anchor is at each sliding location of the convolutional maps and thus at the
center of each spatial window. Each anchor is associated with a scale and an
aspect ratio. Following the default setting of [27], we use 3 scales (1282, 2562,
and 5122 pixels) and 3 aspect ratios (1:1, 1:2, and 2:1), leading to c = 9 anchors
at each location. Therefore, for a convolutional feature map of size W × H, we
have at most W × H × c possible proposals.

Face Detection Module. As in [27], this module is based on the Fast R-CNN
detector [8] that uses the proposed regions. After feature map generated by res4f
layer, with the input of RoIs supplied by RPN, an RoI pooling layer is appended
to extract a fixed-length feature vector in each RoI. Moreover, this layer helps to
excavate local information. By taking full advantage of global and local informa-
tion, the network is able to classify various scales of objects. After RoI pooling,
features are extracted and down sampled by several res5 conv layers and the fol-
lowing average pooling layer respectively in every region. In the original ResNet,
after the average pooling, a fc layer of 1000 output is added to classify 1000
categories in ImageNet. In our implementation, this last layer is removed to
adapt our two tasks. Specifically, we replace it with three sibling fc layers: the
first for two-stage classification, the second for bounding box regression and the
third for pose regression. The two-stage classification is inspired by SubCNN, in
which an additional subcategory fc layer is inserted before the fc layer for object
class classification. In our network, pose class can be interpreted as subcategory,
and the corresponding fc layer provides pose-class-specific feature for further
face classification. For k pose classes, the corresponding fc layer outputs k + 1
dimensional vector with one additional dimension for the background class. As
for the second sibling, we apply class-specific regression, that is, every regressor
is tuned for each pose class. Finally, the detection module terminates at three
output layers. A softmax function is applied at the first output layer directly
based on the output of the “pose class fc” layer for pose class classification. The
second output layer operates on the vector generated by “pose class fc” layer.
And the last one outputs four real-valued numbers for each of the k + 1 pose
classes. Each set of 4 values encodes refined bounding-box positions for one of
the k + 1 classes.

Face Pose Estimation Module. As mentioned previously, estimation can be
considered to have two steps: coarse estimation applied as classification and fine
estimation implemented as regression. At first thought regression should come
after classification. However, inspired by the design of prevalent class-specific
bounding box regressors in object detection network architecture RCNN series
[8,9,27], we are able to set these two steps as siblings leveraging the natural
architecture of neural network. Specifically, we append a fc layer for the two
parallel steps, i.e., classification and regression (see regions in red dotted line in
Fig. 2). Note that we re-utilize the “pose class fc” layer with k + 1 outputs for
pose classification. While “pose regression fc” layer has 3(k + 1) outputs, each
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Fig. 3. Scatter plot of clusters projected. In this plot, only 9 poses have distinct location
on this plane, while the remaining 3 clusters seems like can not be separated clearly.
However, these pose classes can be differentiated easily when projected in roll direction.

set of 3 real values encodes the 3 refined rotation angles. For testing, we select
the regressor corresponding to the highest pose class score to refine its pose in
post process.

3.2 Pose Class

Subcategory has been widely utilized to facilitate object detection. Some meth-
ods discover subcategories by clustering objects according to the viewpoint [10].
In [32], Xiang et al. utilized subcategory to improve CNN-based detection, where
clustering is preformed according to the orientation of the object for pedestrian
and cyclist, and each cluster is considered to be a subcategory. Motivated by
SubCNN, we introduce pose class for each face, which can be considered as sub-
category in face detection. The pose class has two functions: first, it facilitates
face detection. Second, it provides coarse pose information, narrowing down
search space for further pose angle regression.

We apply kmeans [17] on AFLW dataset to form 12 clusters. Figure 3 shows
an example scatter plot of clusters. In this plot, only 9 poses have distinct loca-
tions on Pitch-Yaw plane, while the remaining 3 clusters can not be separated
clearly. However, when projected in roll direction, these 3 pose classes can be
differentiated easily. Thus, on the whole, it is viable to divide continuous real
valued pose angles into discrete classes.

3.3 Training

For RPN, we adopt loss function following [27]. While for the detection and
estimation network, we utilize multi-task loss for joint pose class classification,
face or non-face classification, bounding box regression and head pose regression
(Eq. 1),

Loss = λ1Lposecls(p, k) + λ2Lcls(p′, k′)

+λ3[k � 1]Lloc(tk, v) + λ4[k � 1]Lpose(a, a∗),
(1)



194 T. Li and X. Zhao

where λi, i ∈ {1, 2, 3, 4} are loss weights to balance their contributions to
the overall loss. Both classification losses are implemented with log loss:
Lposecls(p, k) = − log pk, Lcls(p′, k′) = − log p′

k′ , where p is a probability dis-
tribution over K + 1 pose classes, p′ is a probability distribution over K ′ + 1
classes, in our experiments, K = 12,K ′ = 1, k and k′ are the truth pose label
and the truth class label respectively. For bounding box regression, we use the
smoothL1 loss.

Lloc(tk, v) =
∑

i∈{x,y,w,h}
smoothL1(t

k
i − vi), (2)

in which tk = (tkx, t
k
y , t

k
w, tkh) denotes a predicted bounding box for class k, which

specifies the pixel coordinates of the center together with width and height of
each proposal. And v = (vx, vy, vw, vh) indicates true bounding box regression
targets for pose class k. Each ground-truth bounding box G = (Gx, Gy, Gw, Gh)
is specified in the same way. Thus, target vi, i ∈ {x, y, w, h} is computed as
follows,

vx = (Gx − tkx)/tkw (3)

vy = (Gy − tky)/tkh (4)

vw = log(Gw/tkw) (5)

vh = log(Gh/tkh) (6)

The smoothL1 loss is defined as,

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise,

(7)

Similarly, the loss function for pose regression is defined as:

Lpose(a, a∗) =
∑

i∈{p,y,r}
smoothL1(di − d∗

i ), (8)

where d∗
i and di denotes truth angles and estimated ones respectively. In back-

propagation training, derivatives for the multi-task loss are back-propagated to
the previous layers.

3.4 Testing

From a given test image, we first extract convolutional features. Then, RoIs are
generated by the RPN module. As features in each RoI are pooled by RoI pooling
layer from the last conv layer, the subsequent network is able to make predictions
for all tasks. In post-process, we select top N boxes according to face softmax
output. Then for each box, assign the correspongding pose class with the highest
score out of k+1 pose class scores. After determining pose class, more accurate
rotation angles are obtained by appling the pose-class-specific pose regression.
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With the sharing of convolutional layers among RPN, detection and estimation
networks, computation time is reduced substantially. In our experiments, we also
found that even without sharing convolutional layers, the computation speed
summed up by the two separate networks is still faster than [25] thanks to the
RPN proposed by Ren et al. [27].

4 Experimental Validations

4.1 Datasets and Evaluation Metric

For face detection, we evaluate the proposed framework on the challenging AFW
[36] dataset. For face pose estimation, we carry out experiments on both AFW
and AFLW [18] datasets.

AFLW. To test the robustness of our approach for images from real senarios
with challenging scale variations, cluttering background and significant shape
changes, we utilize AFLW for training and testing to evaluate the estimation
performance. AFLW contains 24386 faces annotated with pose (yaw, pitch and
roll) and truth bounding box in 21997 real-world wild images. Head poses ranging
from 0◦ to 120◦ for yaw and upto 90◦ for pitch and roll exhibiting a large variety
in appearance (e.g., pose, expression, ethnicity, age, gender) as well as general
imaging and environmental conditions. We use exactly the same 1000 images
randomly selected by [25] for testing, all other images for training.

AFW is a very popular benchmark for evaluation of both face detection and
head pose estimation algorithms. This dataset provides 205 images with 468
faces in the wild with yaw degree up to 90◦. The images tend to contain cluttered
background with large variations in face viewpoint, illumination and appearance
(aging, sunglasses, make-ups, skin color, expression etc.). Each face is labeled
with a bounding box, and a discretized viewpoint (−90◦ to 90◦ every 15◦) along
pitch and yaw directions and (left, center, right) viewpoints along the roll direc-
tion. In consistent with other methods, we select 341 faces with height greater
than 150 pixels following the protocol of [36].

Evaluation Metric. Following previous works, we use Average Precision (AP)
[4], and precision-recall curves to test our face detector on AFW. We demon-
strate our estimation results with mean error over all samples and Cumulative
Error Distribution (CED) curve. This curve provides the fraction of faces with
predicted pose within ±15◦ error tolerance. Note that we only evaluate on dis-
cretized pose predictions rounded to the nearest 15◦ on AFW, e.g., if a predicted
angle is 85◦, then it is rounded to 90◦ rather than 75◦ for evaluation.
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(a) (b)

Fig. 4. Precision-recall curves for face detection on AFW dataset. (a) evaluation IoU
threshold 0.5, (b) evaluation IoU threshold 0.3. The numbers in the legend are the
average precision for the corresponding IoU threshold.

4.2 Setting

The proposed approach is tested on Intel(R) Xeon(R) 2.10 GHz CPU with 32 GB
RAM, NVIDIA TITAN X GPU. As in Faster RCNN, we use image-centric sam-
pling, each SGD mini-batch is constructed from a single image. In RPN subnet-
work, a mini-batch is expected to have 64 positive RoIs and 64 negative RoIs
selected by random sampling for simplicity. For detection and estimation net-
work, a mini-batch is constructed from a single image with 128 RoIs with 1:3
ratio of positive and negative samples. We use a learning rate of 0.001 in the
beginning and drop 0.1 every 50k mini-batch iterations for all 200k mini-batches.
We use a weight decay of 0.0005 and a momentum of 0.9 [15]. All the experiments
including training and testing were performed using the Caffe [12] framework.

4.3 Face Detection

Face Detection Results and Error Analysis. Notice that we evaluate on
different training and testing dataset. As pointed out by Mathias et al. [19], one
important problem in the evaluation of face detection methods is the mismatch
of face annotations in the training and testing stages. Specifically, it is not so
obvious about how to define the rectangle around face for profile and semi-profile
views. In AFLW, the rectangle tends to be larger and more like a square. When
it comes to profile face, the rectangle extends to non-face areas. While in AFW,
the rectangle is likely to be tighter.

To solve this problem, we follow the remedial method proposed by Mathias
et al. [19] to search for a global rigid transformation of the detection outputs
to maximize the overlapping ratio with the ground-truth annotations with the
shared evaluation tool [19]. However, our annotations cannot be simply linearly
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Table 1. AP comparison of our method with different configurations.

IoU 0.3 IoU 0.5 Transformation AP (%)
√ √

97.25√ √
92.49√
81.55√
96.85
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Fig. 5. Performance evaluation of pose estimation on AFLW dataset for (a) roll
(b) pitch and (c) yaw angles respectively. The numbers in the legend are the mean
error in degrees for the respective pose angles.

mapped to AFW annotations. After the global transformation step the mis-
matches still exist. According to our analysis, the inferior performance on AFW
may primarily be caused by poor localization resulting from annotation mis-
match. To demonstrate this, we set evaluation IoU to 0.3 and 0.5 on all methods
to make a fair comparison. Table 1 presents results with different IoU thresh-
olds with or without transformation. When IoU is decreased from 0.5 to 0.3, we
can see that with transformation, our method is improved a lot from 92.49%
to 97.25%, and accuracy is improved even more without transformation, from
81.55% to 96.85%. Moreover, even with consistent IoU threshold 0.3, AP of our
method increases to 0.4 by applying transformation, suggesting that our method
tends to predict results following the annotation style of AFLW dataset. We also
provide precision-recall curves produced by different methods with transforma-
tion under IoU 0.5 and 0.3 in Fig. 4. We compare our approach with the following:
(1) Deformable part model (DPM) [6], (2) HeadHunter [19], (3) SquaresChnFtrs-
5 [1], (4) Structured Models [33], (5) shen et al. [28], (6) TSM [36], (7) Google
Picasa‘s face detector, manually scored by inspection, (8) Face.com‘s face detec-
tor, (9) Face++‘s face detector. As can be seen, AP of our method increases
largely while others only have slightly improvement. Therefore, we can conclude
that the inferiority of our method comparing to others is mainly due to annota-
tion mismatch between training and testing datasets.
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Table 2. Comparison of head pose estimation with other methods on AFLW dataset,
where speed is for both tasks, i.e., face detection and pose estimation. HyperFace is
based on AlexNet, while HF-ResNet is based on ResNet-101. ours vgg is based on
VGG16, while ours res is based on ResNet-50.

Methods Mean absolute error Speed

Pitch Yaw Roll

HyperFace [25] 6.13 7.61 3.92 0.33 fps

HF-ResNet [25] 5.33 6.24 3.29 0.33 fps

KEPLER [16] 5.85 6.45 8.75 3∼4 fps

ours vgg 5.36 6.51 3.41 10 fps

ours res 5.02 6.01 3.32 3 fps

4.4 Head Pose Estimation

AFLW. We compare MAE of different pose angles and speed with other state-
of-the-arts in Table 2. As we can see, except for roll, the proposed method
achieves the best performance with the speed of 3 fps on MAE when using
ResNet-50. In addition, when we apply VGG16 as backbone, the method is
accelerated to 10 fps while maintains relatively lower MAE in both pitch and
roll comparing to HyperFace, only slightly higher than KEPLER in yaw. This
indicates that our method is the best in both accuracy and efficiency. Figure 5
shows the cumulative error distribution curves on AFLW dataset in the order of
pitch, yaw and roll respectively. It can be seen that the proposed method outper-
forms others with more accurate predictions. It is worth noticing that either in
Table 2 or Fig. 5, the estimated yaw angle is less good as other two angles. One
possible explanation is that the distribution of yaw in AFLW dataset is more
decentralized. We will discuss it in detail in Subsect. 4.5.

Table 3. Comparison on AFW dataset.

Methods Accuracy (≤ 15◦)

Multi.HoG 74.6%

Multi.AAMs 36.8%

Face.com 64.3%

FaceDPL [37] 89.4%

KEPLER [16] 96.67%

HyperFace [25] 97.7%

HF-ResNet [25] 98.5%

Ours 98.24%
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Simultaneous Face Detection and Head Pose Estimation 199

Table 4. Mean average error comparison on AFLW, where nocls indicates no clustering
applied, 12clsAll means clustering into 12 groups by three directions, and 12clsYaw
denotes clustering into 12 groups by yaw.

Methods Mean absolute rrror AP

Pitch Yaw Roll

nocls 5.21 6.46 3.33 94.12%

12clsAll 5.13 6.16 3.32 94.62%

12clsYaw 5.02 6.01 3.32 95.03%

AFW. To demonstrate the capability of generalization of our method, we con-
duct experiments on AFW dataset. Because the ground-truth yaw angles are
provided in multiples of 15◦, we round-off our predicted yaw to the nearest 15◦

for evaluation in consistent with the previous works. In Table 3, we compare our
method with the following: (1) Multiview AAMs: an AAM trained for each view-
point, (2) face.com, (3) Multiview HoG, (4) FaceDPL [37], (5) HyperFace [25],
(6) KEPLER [16]. The proposed method scores 98.24% when allowing ±15◦ error
tolerance, achieving comparable performance. Note that HF-ResNet [25] uses
ResNet-101, a deeper and better backbone, while our implementation is based
on ResNet-50. This difference might potentially affects the final performance.
Figure 6 shows cumulative error distribution curves of the proposed method as
well as some of other methods. It is clear that the proposed algorithm achieves
the state-of-the-art, and is able to predict yaw in the range of ±15◦ for more
than 98% of the faces.

4.5 Does Pose Class Help?

To test whether pose class boost performance or not in our work, we conduct
experiments with different settings. First we calculate the covariance of three
angles on AFLW dataset,

covpose =

⎛

⎝
0.0547 0.0097 0.0002
0.0097 0.5324 −0.0168
0.0002 −0.0168 0.0601

⎞

⎠

The 3 × 3 matrix is the covariance matrix of angles in the order of pitch, yaw
and roll. From the diagonal elements, we can see that the variances of pitch and
roll are 0.0547 and 0.0601 respectively. It is very small comparing to that of
yaw, which is 0.5324. Other elements indicate that the three angles are almost
independent to each other. Therefore, yaw contributes most to the variance of
3D pose and clustering in this direction should be more effective. We verify this
guess by making comparison between no clustering, clustering only on the basis
of yaw direction and of all directions. When no clustering is applied, the fc layer
before pose class softmax is removed, and fc layers before bbox regression and
pose regression are set to 8 and 6 respectively. Table 4 shows the results of MAE
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(0°,-90°,0°)

(0°,-75°,0°)

(-23°,-60°,-15°) (0°,15°,0°)

(0°,45°,0°)

(0°,90°,5°)

(4°,86°,-6°)

(9°,81°,0°) (-10°,86°,-6°)

Fig. 7. Qualitative results of our method. Pose estimates for each face are shown on top
of the boxes in the order (pitch, yaw, roll), groundtruth angles are shown at the bottom.
Predictions within ±15◦ error tolerance could be considered as adequate results.

and AP on AFLW dataset. From this table, we observe that either on MAE or
AP, clustering by yaw achieves the best and clustering by all directions performs
better than no clustering, demonstrating that pose class indeed has impact on
both pose estimation and face detection. Furthermore, generating pose classes
along the principle direction significantly boosts the performance (Fig. 7).

5 Conclusions

In this paper, we propose an accurate and cost efficient framework for simul-
taneous face detection and 3D head pose estimation. The entire face detection
module is a region-based method as Faster RCNN. While for head pose estima-
tion, pose angles are firstly clustered into discrete groups. Then the regression
problem becomes a classification problem. Finally a class-specific regressor is
trained to refine the pose in each class. The estimation module is combined to
detection module by sharing convolutional features in early layers. Extensive
results on challenging unconstrained datasets demonstrates the effectiveness of
our method.
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